Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(8): 3643-3654, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38681087

RESUMO

Disordered rock salt oxides (DRX) have shown great promise as high-energy-density and sustainable Li-ion cathodes. While partial substitution of oxygen for fluorine in the rock salt framework has been related to increased capacity, lower charge-discharge hysteresis, and longer cycle life, fluorination is poorly characterized and controlled. This work presents a multistep method aimed at assessing fluorine incorporation into DRX cathodes, a challenging task due to the difficulty in distinguishing oxygen from fluorine using X-ray and neutron-based techniques and the presence of partially amorphous impurities in all DRX samples. This method is applied to "Li1.25Mn0.25Ti0.5O1.75F0.25" prepared by solid-state synthesis and reveals that the presence of LiF impurities in the sample and F content in the DRX phase is well below the target. Those results are used for compositional optimization, and a synthesis product with drastically reduced LiF content and a DRX stoichiometry close to the new target composition (Li1.25Mn0.225Ti0.525O1.85F0.15) is obtained, demonstrating the effectiveness of the strategy. The analytical method is also applied to "Li1.33Mn0.33Ti0.33O1.33F0.66" obtained via mechanochemical synthesis, and the results confirm that much higher fluorination levels can be achieved via ball-milling. Finally, a simple and rapid water washing procedure is developed to reduce the impurity content in as-prepared DRX samples: this procedure results in a ca. 10% increase in initial discharge capacity and a ca. 11% increase in capacity retention after 25 cycles for Li1.25Mn0.25Ti0.50O1.75F0.25. Overall, this work establishes new analytical and material processing methods that enable the development of more robust design rules for high-energy-density DRX cathodes.

2.
Science ; 383(6689): 1337-1343, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513024

RESUMO

The introduction of molecularly woven three-dimensional (3D) covalent organic framework (COF) crystals into polymers of varying types invokes different forms of contact between filler and polymer. Whereas the combination of woven COFs with amorphous and brittle polymethyl methacrylate results in surface interactions, the use of the liquid-crystalline polymer polyimide induces the formation of polymer-COF junctions. These junctions are generated by the threading of polymer chains through the pores of the nanocrystals, thus allowing for spatial arrangement of polymer strands. This offers a programmable pathway for unthreading polymer strands under stress and leads to the in situ formation of high-aspect-ratio nanofibrils, which dissipate energy during the fracture. Polymer-COF junctions also strengthen the filler-matrix interfaces and lower the percolation thresholds of the composites, enhancing strength, ductility, and toughness of the composites by adding small amounts (~1 weight %) of woven COF nanocrystals. The ability of the polymer strands to closely interact with the woven framework is highlighted as the main parameter to forming these junctions, thus affecting polymer chain penetration and conformation.

3.
Adv Mater ; : e2311559, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520395

RESUMO

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

4.
Chemistry ; 30(12): e202302731, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38227358

RESUMO

The Zr-based Metal Organic Framework (MOF) UiO-66(Zr) is widely employed owing to its good thermal and chemical stabilities. Although the long-range structure of this MOF is preserved in the presence of water during several days, little is known about the formation of defects, which cannot be detected using diffraction techniques. We apply here 17 O solid-state NMR spectroscopy at 18.8 T to investigate the reactivity of UiO-66, through the exchange of oxygen atoms between the different sites of the MOF and water. For that purpose, we have selectively enriched in 17 O isotope the carboxylate groups of UiO-66(Zr) by using it with 17 O-labeled terephthalic acid prepared using mechanochemistry. In the presence of water at 50 °C and a following dehydration at 150 °C, we observe an overall exchange of O atoms between COO- and µ3 -O2- sites. Furthermore, we demonstrate that the three distinct oxygen sites, µ3 -OH, µ3 -O2- and COO- , of UiO-66(Zr) MOF can be enriched in 17 O isotope by post-synthetic hydrothermal treatment in the presence of 17 O-enriched water. These results demonstrate the lability of Zr-O bonds and the reactivity of UiO-66(Zr) with water.

5.
ACS Appl Mater Interfaces ; 15(15): 18747-18762, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014990

RESUMO

Lithium-excess, cation-disordered rocksalt (DRX) materials have been subject to intense scrutiny and development in recent years as potential cathode materials for Li-ion batteries. Despite their compositional flexibility and high initial capacity, they suffer from poorly understood parasitic degradation reactions at the cathode-electrolyte interface. These interfacial degradation reactions deteriorate both the DRX material and electrolyte, ultimately leading to capacity fade and voltage hysteresis during cycling. In this work, differential electrochemical mass spectrometry (DEMS) and titration mass spectrometry are combined to quantify the extent of bulk redox and surface degradation reactions for a set of Mn2+/4+-based DRX oxyfluorides during initial cycling with a high-voltage charging cutoff (4.8 V vs Li/Li+). Increasing the fluorine content from 7.5 to 33.75% is shown to diminish oxygen redox and suppresses high-voltage O2 evolution from the DRX surface. Additionally, electrolyte degradation processes resulting in the formation of both gaseous species and electrolyte-soluble protic species are observed. Subsequently, DEMS is paired with a fluoride-scavenging additive to demonstrate that increasing fluorine content leads to increased dissolution of fluorine from the DRX material into the electrolyte. Finally, a suite of ex situ spectroscopy techniques (X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectroscopy, and solid-state nuclear magnetic resonance spectroscopy) are employed to study the change in DRX composition during charging, revealing the dissolution of manganese and fluorine from the DRX material at high voltages. This work provides insight into the degradation processes occurring at the DRX-electrolyte interface and points toward potential routes of interfacial stabilization.

6.
J Am Chem Soc ; 144(13): 5795-5811, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325534

RESUMO

In the pursuit of urgently needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes, tunable ionic conductivities, and facile processing. For this family of compounds, synthesis protocols strongly affect cation site disorder and modulate Li+ mobility. In this work, we reveal the presence of a high concentration of stacking faults in the superionic conductor Li3YCl6 and demonstrate a method of controlling its Li+ conductivity by tuning the defect concentration with synthesis and heat treatments at select temperatures. Leveraging complementary insights from variable temperature synchrotron X-ray diffraction, neutron diffraction, cryogenic transmission electron microscopy, solid-state nuclear magnetic resonance, density functional theory, and electrochemical impedance spectroscopy, we identify the nature of planar defects and the role of nonstoichiometry in lowering Li+ migration barriers and increasing Li site connectivity in mechanochemically synthesized Li3YCl6. We harness paramagnetic relaxation enhancement to enable 89Y solid-state NMR and directly contrast the Y cation site disorder resulting from different preparation methods, demonstrating a potent tool for other researchers studying Y-containing compositions. With heat treatments at temperatures as low as 333 K (60 °C), we decrease the concentration of planar defects, demonstrating a simple method for tuning the Li+ conductivity. Findings from this work are expected to be generalizable to other halide solid electrolyte candidates and provide an improved understanding of defect-enabled Li+ conduction in this class of Li-ion conductors.

7.
Chemistry ; 28(14): e202104437, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35142402

RESUMO

A series of Zr-based UiO-n MOF materials (n=66, 67, 68) have been studied for iodine capture. Gaseous iodine adsorption was collected kinetically from a home-made set-up allowing the continuous measurement of iodine content trapped within UiO-n compounds, with organic functionalities (-H, -CH3 , -Cl, -Br, -(OH)2 , -NO2 , -NH2 , (-NH2 )2 , -CH2 NH2 ) by in-situ UV-Vis spectroscopy. This study emphasizes the role of the amino groups attached to the aromatic rings of the ligands connecting the {Zr6 O4 (OH)4 } brick. In particular, the preferential interaction of iodine with lone-pair groups, such as amino functions, has been experimentally observed and is also based on DFT calculations. Indeed, higher iodine contents were systematically measured for amino-functionalized UiO-66 or UiO-67, compared to the pristine material (up to 1211 mg/g for UiO-67-(NH2 )2 ). However, DFT calculations revealed the highest computed interaction energies for alkylamine groups (-CH2 NH2 ) in UiO-67 (-128.5 kJ/mol for the octahedral cavity), and pointed out the influence of this specific functionality compared with that of an aromatic amine. The encapsulation of iodine within the pore system of UiO-n materials and their amino-derivatives has been analyzed by UV-Vis and Raman spectroscopy. We showed that a systematic conversion of molecular iodine (I2 ) species into anionic I- ones, stabilized as I- ⋅⋅⋅I2 or I3 - complexes within the MOF cavities, occurs when I2 @UiO-n samples are left in ambient light.

8.
ACS Appl Mater Interfaces ; 13(32): 38221-38228, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34347420

RESUMO

Disordered rocksalt (DRX) cathodes have attracted interest due to their high capacity and compositional flexibility (e.g., Co-free chemistries). However, the sloping voltage profile and gradual capacity fade during cycling have hindered the widespread adoption of these materials. Simulations predict that fluorine substitution in DRX cathodes will improve their capacity, rate performance, and cyclability. In this study, we use a fluidized bed reactor to fluorinate a model Li-rich DRX composition (Li1.15Ni0.375Ti0.375Mo0.1O2, NTMO) to investigate how fluorine content impacts the cathode's structure and electrochemical performance. Instead of substituting O with F to form oxyfluoride phases, direct fluorination of DRX cathodes leads to the formation of LiF surface films, which improves the specific energy and capacity retention. This study demonstrates the feasibility of direct fluorination to improve the electrochemical performance of high-voltage cathodes by tuning the material's surface chemistry.

9.
J Magn Reson ; 330: 107029, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34311423

RESUMO

The measurement of dipolar and J- couplings between 29Si and 17O isotopes is challenging owing to (i) the low abundance of both isotopes and (ii) their close Larmor frequencies, which only differ by 19%. These issues are circumvented here by the use of isotopic enrichment and dedicated triple-resonance magic-angle spinning NMR probe. The surface of 29Si-enriched silica was labelled with 17O isotope and heated at 80 and 200 °C. 29Si-17O connectivities and proximities were probed using two-dimensional (2D) through-bond and through-space heteronuclear multiple-quantum coherences (J- and D-HMQC) experiments between 17O and 29Si nuclei. The simulation of the build-up of the J- and D-HMQC signals allowed the first experimental measurement of J- and dipolar coupling constants between 17O and 29Si nuclei. These HMQC experiments allow distinguishing two distinct siloxane (SiOSi) oxygen sites: (i) those covalently bonded to Q3 and Q4 groups, having a hydroxyl group as a second neighbour and (ii) those covalently bonded to two Q4 groups. The measured J- and dipolar coupling constants of siloxane 17O nucleus with Q4 29Si nuclei differ from those with Q3 29Si nuclei. These results indicate that the 29Si-17O one-bond J-coupling and Si-O bond length depend on the second neighbours of the Si atoms.

10.
J Magn Reson ; 299: 109-123, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30594000

RESUMO

In solid-state NMR spectroscopy, the through-space transfer of magnetization from protons to quadrupolar nuclei is employed to probe proximities between those isotopes. Furthermore, such transfer, in conjunction with Dynamic Nuclear Polarization (DNP), can enhance the NMR sensitivity of quadrupolar nuclei, as it allows the transfer of DNP-enhanced 1H polarization to surrounding nuclei. We compare here the performances of two approaches to achieve such transfer: PRESTO (Phase-shifted Recoupling Effects a Smooth Transfer of Order), which is currently the method of choice to achieve the magnetization transfer from protons to quadrupolar nuclei and which has been shown to supersede Cross-Polarization under Magic-Angle Spinning (MAS) for quadrupolar nuclei and D-RINEPT (Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer) using symmetry-based SR412 recoupling, which has already been employed to transfer the magnetization in the reverse way from half-integer quadrupolar spin to protons. We also test the PRESTO sequence with R1676 recoupling using 270090180 composite π-pulses as inversion elements. This recoupling scheme, which has previously been proposed to reintroduce 1H Chemical Shift Anisotropy (CSA) at high MAS frequencies with high robustness to rf-field inhomogeneity, has not so far been employed to reintroduce dipolar couplings with protons. These various techniques to transfer magnetization from protons to quadrupolar nuclei are analyzed using (i) an average Hamiltonian theory, (ii) numerical simulations of spin dynamics, and (iii) experimental 1H → 27Al and 1H → 17O transfers in as-synthesized AlPO4-14 and 17O-labelled fumed silica, respectively. The experiments and simulations are done at two magnetic fields (9.4 and 18.8 T) and several spinning speeds (15, 18-24 and 60 kHz). This analysis indicates that owing to its γ-encoded character, PRESTO yields the highest transfer efficiency at low magnetic fields and MAS frequencies, whereas owing to its higher robustness to rf-field inhomogeneity and chemical shifts, D-RINEPT is more sensitive at high fields and MAS frequencies, notably for protons exhibiting large offset or CSA, such as those involved in hydrogen bonds.

11.
Dalton Trans ; 46(36): 12010-12014, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28848975

RESUMO

Aluminium-based metal-organic framework MIL-100 was utilized for the capture of actinide ([UO2]2+, Th4+) and lanthanide (Nd3+) cations. The results indicate a very quick sorption process, leading to very high cation uptakes together with selectivity for Th4+.

12.
Chemistry ; 23(40): 9525-9534, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28379610

RESUMO

Advanced solid-state NMR methods and first-principles calculations demonstrate for the first time the formation of penta-coordinated scandium sites. These coordinatively unsaturated sites were shown during the thermal activation of scandium-based metal-organic frameworks (MOFs). A 45 Sc NMR experiment allows their specific observation in activated Sc3 BTB2 (H3 BTB=1,3,5-tris(4-carboxyphenyl)benzene) and MIL-100(Sc) MOFs. The assignment of the ScO5 groups is supported by the DFT calculations of NMR parameters. The presence of ScO5 Lewis acid sites in MIL-100(Sc) explains furthermore its catalytic activity. The first NMR experiment to probe 13 C-45 Sc distances is also introduced. This advanced solid-state NMR pulse sequence allows the demonstration of the shrinkage of the MIL-100(Sc) network when the activation temperature is raised.

13.
Acta Crystallogr C Struct Chem ; 73(Pt 3): 176-183, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257011

RESUMO

The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H2O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of 13C magnetization under 13C-27Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between 13C and 27Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these 13C-27Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, 13C-{27Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the 27Al nuclei of the framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...